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Outline

• Design Issues
— Support clients directly? Or only through other agents (e.g. 

Request Manager)
— Should SRMs get files if not in local cache?
— Support push/pull?
— Treat read/write separately?
— Support a unified interface to DRM/HRM?

• Policies
— Support for permanent / durable/ volatile files
— Pinning level
— User priorities
— Run entire “job” (multiple file requests)
— Notify RepCat of  “volatile” staging? Support dynamic inquiry?

• Problems
— How to control “overflow” writes?
— How to make SRM robust (recover after crash)?
— Pin-lock avoidance
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Request Manager and SRMs
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Communication with
and between SRMs

HRM

Request
Executer

DRM

Event-file
index

Replica
catalog

Network
Weather
Service

Logical
query

File
transfer
requests

GRID

DRM

Disk
Cache

clientclient ...

Request
Interpreter

Matchmaking
Service

tape system
Disk

Cache



Arie Shoshani – June 2001

Three scenarios that SRMs
should be able to support

• A client communicates directly with DRM/HRM
— No way to call client back
— May ask for a local / remote file

• An agent calls DRM on behalf of a client
— E.g. Request executer
— It is possible to call agent back
— May ask for local / remote file

• A DRM calls another DRM (or HRM)
— As a result of a request for a remote file
— To request a file
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Should SRMs support clients 
directly?

• Yes, because:
— Clients should be able to communicate directly to an 

SRM, not requiring special agents (such as ReqMgr)
— e.g. running a simulation, writing to a DRM
— e.g. running analysis, client knows files it wants

• Implications
— Need to support “no_call_back” capability
— i.e. support “status”
— Client unreliable

• Does not provide “release”
• Does not provide “abort”

— Therefore, need “time-out” mechanism support
— Comment: “time-out” needed for all unreliable 

behavior, such a network crashes



Arie Shoshani – June 2001

Should SRMs get files if not in local 
cache?

• Yes, because:
— Clients can communicate directly to an SRM
— Does not require the architecture to have special 

agents (e.g. direct HRM-HRM replica support)
— Allows DRM/HRMs to communicate directly with other 

DRM/HRM
• Implications

— Provide logical_file_name + source URL for get/put
— SRM returns local file URL
— Support “call_back” and “status” (for simple clients)

• Benefit
— Can design HRM as “DRM+TRM”
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Should SRMs support push/pull?

• “Normal” behavior
— Get/pull, Put/push

• Problem
— unreliable behavior

• Put/push gives “file size”, space allocated
… writes more than “file size”

• Get/pull is given “file size”, space allocated
… gets more than “file size”

— How to detect?
• Pull not a problem – can monitor transfer

(policy: abort / get more space)
• Push is a problem

• But, push is needed by clients “writes”
• Decision: support both “modes”

— Get/push useful for HRM = DRM+TRM



Arie Shoshani – June 2001

Treat read/write separately?

• Supprting “writes”
— DRM: make space, perform pull/push
— HRM: same as DRM + schedule put into tape

• Considerations
— Separate queue for read and write
— Separate space allocation for read and write

• Conclusion: no separation
— No advantage to separate treatment
— More complicated to implement
— Priorities for write/read – a matter of policy
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Support a unified interface to 
DRM/HRM?

• Yes, because:
— Access to SRMs uniform
— Simpler to implement
— Staging performed “behind the scenes”
— To the requester only the latency matters

• HRMs can have a latency because of tape transfer 
and queues

• DRMs can also have a latency - getting a file from 
another site (network transfer latency)

• Benefits
— More uniform design
— Clients communicate with DRMs and HRMs the same
— DRMs + HRMs communicate uniformly
— DRM can be used directly in HRM implementation
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Interface Functionality

• Want to get a file
— Request_to_get (push/pull)
— Release
— Abort
— Status
— Call_back (when file is available)

• Want to put a file
— Request_to_put (push/pull)
— Release
— Abort
— Status
— Call_back_1 (when file is transferred to disk)
— Call_back_2 (when file is transferred to tape – for HRM)
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